Wednesday, 07 July 2021 09:33

GRADE 12 MATHEMATICS PAPER 1 MEMORANDUM - PAST PAPERS 2017 JUNE

Share via Whatsapp Join our WhatsApp Group Join our Telegram Group

MATHEMATICS PAPER 1
GRADE 12
NATIONAL SENIOR CERTIFICATE
MEMORANDUM
JUNE 2017

NOTE

  • If a candidate answered a question TWICE, mark the FIRST attempt ONLY.
  • Consistent accuracy(CA) applies in ALL aspects of the memorandum.
  • If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
  • The mark for substitution is awarded for substitution into the correct formula.

QUESTION 1

1.1.1  𝑥2 − 𝑥 − 30 = 0
(𝑥 + 5)(𝑥 − 6) = 0
𝑥 + 5 = 0 or/of 𝑥 − 6 = 0
𝑥 = −5 or/of 𝑥 = 6 
✓✓ factors 
✓𝑥-values 
(3) 
1.1.2  3𝑥2 + 𝑥 − 1 = 0
x =   -(1)± √(1)2-4(3)(-1)  
                   2(3)
x= -1 ± √13
          6
∴x=0,43 or x = -0,77
✓ substitution 
✓✓ 𝑥-values 
(3) 
1.1.3  1.13 ✓ factors
✓ critical values with method
✓✓ answer (accuracy)  (4)
1.1.4 

3x - 5√x = 2
3x-2 =5√x
(3x-2)2 =(5√x)2
9x2 - 12x + 4 =25x
9x2 - 37x +4=0
(9x-1)(x-4)=0
∴x= or x=4
       9
1.14
OR

3x-5√x=2
3x-5x½-2=0
(3x½+1)(x½-2)=0
x½= or x=4
       3
since x½ must be >0
x=4 is the only valid answer

✓ isolating 5 x
✓ squaring both sides 
✓ standard form 
✓ answers 
✓ testing and conclusion 
✓ standard form
✓✓ factors 
✓ answers 
✓ conclusion (5)
1.2 

y-x-6=0..................(1)
(x-3)2 + (y-3)2 = 18..(2)
from (1); y=x+6 ...(3)
(3) in (2); (x-3)2 + (x+6-3)2 = 18
x2-6x+9 +x2 +6x +9 =18
2x2 =0
x=0
y=0+6
=6

✓ substitution 
✓ removing brackets 
✓ standard form
✓ 𝑥-value 
✓ 𝑦-value 
(5) 
1.3

1 +     1   
      x + 1      5
            x
    1   
x2 + 1      5
    x
    x    2 
x2 + 1    5
2x2 + 2 = 5x
2x2 - 5x + 2 = 0
(2x-1)(x-2) = 0
x=½ or x=2 
If candidate after step 3 concludes
x = 2, then max of (2/5) 

✓ adding denominator 
✓ simplification 
✓ standard form 
✓ factors or formula
✓ answers 
(5)

[25]

QUESTION 2

2.1.1  1 ; 5 ; 12 ; 22 ; 𝑥 ; 𝑦
  4    7   10 - 1st differences
    3     3 - 2nd differences
T5 = 35 and T6 = 51 
✓✓ answers  (2) 
2.1.2  2.12 ✓ answer (4)
2.1.3 n2 - ½n = 3432
2
n- ½n - 3432 = 0
2
3n- n - 6864 = 0
(3n+143)(n-48) = 0
n = -143 or n = 48
         3
✓ equation
✓ standard form 
✓ factors or formula 
✓ answer n = 48
(4)
2.2.1  𝑇2 − 𝑇1 = 𝑇3 − 𝑇2
𝑚 + √2 = 3√2 − 𝑚
2𝑚 = 2√2
𝑚 = √2
OR
2.21

✓ method
✓ answer 
✓ method 
✓ answer 
(2)
2.2.2   T51 = a + 50d
=-√2 + 50(2√2)
=99√2
✓ value of d
✓ substitution into correct formula 
✓ answer 
(3)
2.3 

Terms between 50 and 500 divisible by 7
First term = 56 and Last term = 497
2.3

✓ identification of first and last terms 
✓ substitution 
✓ answer
(3)
2.4.1   2.41 ✓ method 
✓ substitution 
✓ answer 
2.4.2   Yes, because
-1<r<1
-1< <1
      3
✓ Yes
✓ reason (2) 
2.4.3  2.43 ✓✓ substitution 
✓ simplification 
✓ exponential law 
✓ answer 
(5)
2.5 2.5= 1+1 (1+1) (1+1+1)(1+1+1+1)(1+1+1+1+1)(1+1+1+1+1+1)
= 1+2+3+4+5+6
21
✓ expansion
✓ answer
(2)

[30]

QUESTION 3

3.1.1  𝑥 = 5  answer / antwoord (1) 
3.1.2 

(x-5)2 = 4
x-5 = ± 2
x=3 or x=7
OR
x2 -10x +25 = 4
x2 -10x +21 = 0
(x-3)(x-7) = 0
x=3 or x=7

✓ let y = 0
✓ square root
✓ answer  (3)
✓ let  = 0
✓ factors 
✓ answers 
3.1.3   3.13 ✓ x-intercepts 
✓ y-intercepts 
✓ turning point 
✓ shape 
(4)
3.1.4   Range of f : 𝑦 ∈ [−4; ∞] 𝑜𝑟/𝑜𝑓 𝑦 ≥ −4 𝑦 ∈ 𝑅   ✓ answer (1) 
3.1.5 

Reflection about the x-axis 
y= -(x - 5)2 + 4

✓ answer 
✓ equation (2)
3.2  x2 +3 = kx - 1
x2 -kx + 4 =0 
For g (x) to be a tangent, roots are equal.
b2 -4ac = 0
k2 -16 = 0
k2 = 16 / (k+4)(k-4) =0
k=±4 / k=-4 or k= 4
✓ equating 
✓ standard form 
✓ Δ = 0
✓ substitution 
✓ answers  (5)

[16]

QUESTION 4

4.1  p = 1 and q = 2  ✓ value of p
✓ value of q  (2) 
4.2 

y=    a     + 2 
     (x+1)
4 =   a   + 2
       0+1 
a=2
y =   2    + 2 
     (x+1)

✓ substitution of point 
✓ value of a 
✓ equation
(3)
4.3 

Point of intersection of axes of symmetry of f is (– 1 ; 2)
Point of intersection of axes of symmetry of g is:
x-3 = x + 1
2x = 4
x=2
y=-1
Transformation is from (-1;2)→(2;-1)
∴3 units to the right and 3 units down

✓ point of intersection
✓ equating
✓ x-value and y-value 
✓ method 
✓ answer  (5)

[10]

QUESTION 5

Related Items

5.1  = a1 + ½
6
∴ a = 
          3 
✓ substitution 
✓ answer (2)
5.2    5.2 ✓ substitution
✓ answer  (2)
5.3   5.3 ✓ answer (1)
5.4  h(x) = 3x
h-1 : y = log3x or log x
                           log 3
✓ answer h
✓ answer h-1 (2)
5.5  Points: (-2;9½) and (0; )
                                     2
m= y2 - y1 
      x2 - x1
19 
    2       2
    -2 - 0

   -2
=-4

✓ coordinates of A .
✓ substitution
✓ answer  (3)

[10]

QUESTION 6

6.1   6.1
effective rate = 16.08%p.a
✓ formula 
✓ substitution 
✓ answer (3) 
6.2.1  𝐴 = 𝑃(1 + 𝑖𝑛)
= 75 000(1 +12% x 8)
= 𝑅147 000
Monthly installment: R147000
                                 96 months
= R1531,25

✓ substitution 
✓ answer 
✓ answer (3)
6.2.2  A = P(1+i)n
147000 = 75000 (1+i)8
(1+i)8 = 1.96
1 + i = 8√196
i = 1,087757306 - 1
i = 0,08775...
rate = 8,78%
✓ substitution 
✓ simplification 
✓ making i subject of the formula 
✓ answer (4) 
6.3   6.3 ✓✓✓setting up equation
✓ answer 
(4)

[14]

QUESTION 7

7.1  𝑓(𝑥) = −2𝑥2
𝑓(𝑥 + ℎ) = −2(𝑥 + ℎ)2
= −2(𝑥2 + 2𝑥ℎ + ℎ2)
= −2𝑥2 − 4𝑥ℎ − 2ℎ2
𝑓′(𝑥) = lim   𝑓(𝑥 + ℎ) − 𝑓(𝑥)
         ℎ→0           ℎ
= lim      −2𝑥2 − 4𝑥ℎ − 2ℎ2 − (−2𝑥2)
   ℎ→0                   ℎ
= lim     −4𝑥ℎ − 2ℎ2
 ℎ→0          ℎ
= lim     ℎ(−4𝑥 − 2ℎ)
  ℎ→0          ℎ
= lim   (−4𝑥 − 2ℎ)
 ℎ→0
= −4𝑥 
✓ −2x2 − 4𝑥ℎ − 2ℎ2
✓ substitution 
✓ common factor 
✓ answer
(4) 
7.2.1   𝑦 = 6𝑥 + 4𝑥√𝑥
𝑦 = 6𝑥 + 4𝑥3
                  2
𝑑𝑦  =  6 + 6𝑥½
𝑑𝑥
✓4𝑥3
    2
6 ✓ 6𝑥½✓ 
(3)
7.2.2  7.22 tr2 - ½ ✓
6
✓✓answer (3)

[10]

QUESTION 8

8.1  y = 1(x-1)(x-4)
=(x2 -2x + 1)(x-4)
=x3 -4x2 - 2x+ 8x + x - 4
= x3 - 6x+ 9x -4 
∴b + -6 and c = 9
OR
1+b+c = 4= 0
b+c = 3 ...(1)
64 + 16b + 4c - 4 = 0
16b +4c = -60 ..(2)

(2)-(1) x 4
16b + 4c = 12
∴12b = -72
b=-6
-6+c=3
∴c=9
✓ substitution
✓ expanding
✓ answer
✓ both equations
✓ subtraction
✓ answers 
(3) 
8.2   𝑓(𝑥) = 𝑥3 − 6𝑥2 + 9𝑥 − 4
𝑓′'(𝑥) = 3𝑥2 − 12𝑥 + 9 = 0
(3𝑥 − 9)(𝑥 − 1) = 0
3𝑥 − 9 = 0 𝑜𝑟 𝑥 − 1 = 0
𝑥 = 3 𝑜𝑟 𝑥 = 1
𝑦 = −4
𝐵(3 ; −4) 
✓ f ′(x) = 0
✓ factors
✓ x-values 
✓ coordinates of B 
(4)
8.3  x<1 or x>3  x<1 x>3
8.4 𝑓(𝑥) = 3x-12x + 9
𝑓''(𝑥) = 6x - 12 = 0
x= 2
y= -2
Point of inflection: (2 ; -2)
equation of line /: 
y = x-4
-2 = 2-4
-2= -2
✓ f'' (x) = 0
✓ coordinates
✓ equation of line 
✓ method
(4)

[13]

QUESTION 9

9.1  height of ΔAPQ = (8-y)
 x 8-y  (APQ III ABC)
10      8
8x = 80 - 10y
10y = -8x + 80
y=-x + 8
     10
✓ ratios
✓ answer(2) 
9.2   9.2 ✓ formula 
✓ substitution
(2)
9.3   A(x) = 8x -  8x 2 
                  10 
A'(x) =  16  x + 8 = 0
            10
x = -8 x -  10 
                16
x = 5cm
y =  (5) + 8 = 4cm
      10
OR to gey y
A = 8(5) -  8(5)2
                  10
=20cm2
y = 4cm
✓  A' (x) ✓ =0
✓ length of x
✓ length of y
(4)

[8]

QUESTION 10

10.1.1   P(A or B)' = 1-P(A or B)
= 0,3
✓ answer(1) 
10.1.2  P(A or B) = P(A) + P(B)
0,7 = 0,4 + k
k = 0,3
✓ rule
✓ answer (2)
10.1.2 P (A∪B) = P(A) + P(B) - P(A∩B)
0,7 = 0,4 + k - P(A∩B)
P(A∩B) = k - 0,3

P(A∩B) = P(A) x P(B)
k-0,3 = 0,4 x k
0,6k = 0,3
k = 0,5
✓ substitution in rule
✓ answer 
✓ substitution in rule 
✓ answer  (4)
10.2   10.2  
10.2.1   m =  10  and  30 
          24   12        240   24    8
✓ answer m 
✓ answer n (2)
10.2.2 14   9    or 14   x  
24     x+9    20      24     x+9    30
   126    =     or                  14x    =  
24x + 216  20                   24x + 216   30
168 x + 1512 = 2520        420x = 168x + 1512
168x = 1008                     252x = 1512
x = 6                                  x= 6
  9    x  
x+9   x+9
✓ equation 
✓ answer  (3)
10.2.3  𝑃(𝐺𝑟𝑒𝑒𝑛) =
                 24    30
= 21
   40
(0,525) 
✓ addition 
✓ answer  (2)

[14]

TOTAL: 150

Last modified on Thursday, 08 July 2021 10:01