MATHEMATICS PAPER 2
GRADE 12
NOVEMBER 2017
MEMORANDUM
NATIONAL SENIOR CERTIFICATE

NOTE:

  • If a candidate answers a question TWICE, only mark the FIRST attempt.
  • If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
  • Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
  • Assuming answers/values in order to solve a problem is NOT acceptable.
GEOMETRY  
A mark for a correct statement
(A statement mark is independent of a reason.) 
A mark for a correct reason
(A reason mark may only be awarded if the statement is correct.) 
S/R  Award a mark if the statement AND reason are both correct. 


QUESTION 1

Time for 100 m sprint (in seconds)  10,1  10,2  10,5  10,9  11  11,1  11,2  11,5 12 12 12,2 12,5
Distance of best long jump (in metres)  8 7,7  7,6  7,3  7,6  7,2  6,8 7 6,6 6,3 6,8 6,4

math1

1.1  a = 14,343… = 14,34
b = –0,642… = – 0,64 
✓✓ value of a
✓ value of b (3) 
1.2  Y = 14,42 - 0,64(11,7)
OR
y = 6,83 (calculator) 
✓ substitution correctly
✓ answer (2)
✓✓answer (2)
1.3  The gradient increases 
The point (12,3 ; 7,6) lies some distance above the current data.
✓ increases
✓ reasoning in words (2)

[7]

QUESTION 2

12  13 13 14 14 16 17 18 18 18 19 20
21 21 22 22 23 24 25 27 29 30 36  

 

2.1.1  x = 472
       23
x = 20,52 seconds
472
     23 
✓ answer (2)
2.1.2  Q1 = 16
Q3 = 24
IQR = Q3 – Q1
= 24 – 16 = 8
✓ Q1
✓ Q3
✓ answer (3)
2.2  20,52 + 5,94 = 26,46
∴ > 26,46
∴ 4 girls
✓ 26,46
✓ answer (2)
2.3  math2 ✓ whiskers ending at 12 & 36
✓ Q1 = 16 & Q3 = 24 (box)
✓ Q2 = 20 (3)
2.4.1  Girls  ✓ answer (1)
2.4.2  Five-number summary of boys: (15 ; 21 ; 23,5 ; 26 ; 38)
None of the boys 
5 girls completed in less than 15 seconds which was the minimum time taken by the boys. 
✓ answer
✓ reason/(2)

[13]

QUESTION 3
3

3.1.1   mFC = y2 - y1
             x2 - x1
=
 3½-(-4)
      3-8
= -
     2
y = mx + c        y - y1 = m(x-x1)
y = -x + c          
        2
-4=-(8) + c OR   (y-(-4))=- (x + 8) 
       2                                    2    
y = - 3 x+8             y+4 = -x + 12
        2                                2
y = -x + 8           y=- x + 8 
        2                          2
OR
math3

✓ substitution of (8 ; –4) & (3;3½)
✓ gradient
✓ substitution of m and (8 ; –4)
✓ equation of AC
(4)

✓ substitution of (8 ; –4) & (3;3½)
✓ gradient
✓ substitution of m and  (3;3½)
✓ equation of AC
(4)

3.1.2 

AC: 3x + 2y = 16 and BG: 7x – 10y = 8
15x + 10y = 80
7x – 10y = 8
   22x = 88
x=4
3(4) + 2y = 16
y=2
∴G(4 ; 2)
OR
BG: 7x – 10y = ∴ 7 x-
                           10   10
7 x-=- 3 x + 8 [CA from 3.1.1]
  10   10    2
11x = 44
 5       5
x = 4
3(4) + 2y = 16
y = 2
∴G(4 ; 2)

✓ method:solving simultaneously 
✓ x coordinate (x > 0)
✓ y coordinate (3)

 

 

✓ method: equating
✓ x coordinate (x > 0)
✓ y coordinate (3)

3.2  x4 + 4 =3 and yA + 2 = 3½
    2                     2
∴ A(2 ; 5)
OR by translation:
xA = 3-(4-3) = 2
yA = 3½+(3½-2)=5
∴ A(2 ; 5)

✓ equation ito x
✓ equation ito y (2)

 

✓ equation ito x
✓ equation ito y (2)

3.3 

The coordinates of the midpt of AB:
But the y-coordinate of E is 0
∴ E(–2 ; 0) is the midpoint of AB
∴ EF || BG [midpoint theorem OR line divides 2 sides of Δ in prop/lyn]
OR
The coordinates of the midpt of AB is:
math4
∴ In ΔABG: AE = EB and AF = FG
∴ EF || BG [midpoint theorem]
OR
Equation of AB:
math5

✓ subst A & B into midpt formula
✓ y coordinate = 0
✓ E = midpt
✓ Reason
(4)

✓ subst A & B into midpt formula
✓ lengths of AE & EB
✓ AE = EB or E = midpt
✓ Reason
(4)

✓ equation of AB
✓ coordinates of E
✓ gradient of EF
✓ gradient EF = gradient BG
(4)

3.4 

Midpoint of AC = (5;½)
xD + (6) = 5 and xD + (-5) = ½
     2                         2
∴ D(16 ; 6)
OR
by translation:
D(16 ; 6)
OR
mBC-5 -(-4)   and mAB 5 -(-5)  = 
               -6-8      14                    2-(-6)       4
AD: y - 5 =  (x-2) → y =  x-14
                   4                     4
x - 14 =  x + 34
4               14        7 
∴ x = 16
y = 6

✓✓(5;½)
✓ x value ✓ y value
(4)
✓ method finding x
✓ method finding y
✓ x value ✓ y value
(4)
✓✓ equating
✓ x value
✓ y value
(4)
[17]


QUESTION 4
math6

4.1.1  mPK5 - (-3)
            -4 - 0
=-2
PK ⊥ SR [radius ⊥ tangent]
∴ mPK x mRS = -1
∴ mRS = ½
✓ substitution P & K into gradient formula
✓ gradient of PK
✓ PK ⊥ SR OR r ⊥ tangent
✓ answer
(4) 
4.1.2  y = ½x + c
5 = ½(-4) + c   OR   (y-5) = ½(x-(-4))
c = 7                         (y - 5) = ½x + 2
y = ½x+7                  y = ½x + 7
✓ substitution of m and P
✓ equation
(2)
4.1.3 math7
M(–2 ; 1)

∴ r 2 = (x2 - x1)2 + ( y2 - y1)2       

r 2 = (-2 + 4)2 + (1 - 5)2

∴ r 2 = 20

∴(x + 2)2 + ( y - 1)2 = 20 or √( 20)2

OR

math8

(x + 2) 2 + ( y - 1) 2 = r 2

(-4 + 2) 2 + (5 - 1) 2 = r 2

∴ r 2 = 20

∴ (x + 2)2 + ( y - 1)2 = 20 or √( 20)2

OR

math9

✓x value of M

✓y value of M
✓r 2 = 20
✓equation
(4)

 

✓✓M (– 2 ; 1)
✓r 2 = 20
✓equation
(4)

 

✓✓M (– 2 ; 1)

✓r 2 = 20

✓equation

(4)

4.1.4

tanθ = mPK = -2

∴ q = 180° – 63,43°

= 116,57°

PKR = 116,57° - 90°      [ext ∠ of  ΔMOK]

= 26,57°
OR
math10 

✓tanθ = -2

✓size of q
✓answer
(3)

 

✓lengths of PK, PR & RK
✓correct values into cos rule
✓answer
(3)

 

✓lengths of sides
✓ratio
✓answer
(3)

 

✓lengths of sides
✓ratio
✓answer
(3)

4.1.5 

RS || tangent at K(0 ; – 3 )

∴ mPS = mtang 

∴ y = ½ x - 3

OR

mPK =   1- 5    = -2
          - 2 + 4

mPKmtang = -1          [radius ⊥ tangent]

∴ mtan g  = ½

∴ y = ½ x - 3

✓gradient

✓equation (2)

 

✓gradient

✓equation (2)

 

4.2   t ∈ (-3 ; 7)

OR
- 3 < t < 7

✓– 3 (A)
✓7 (CA from 4.1.2)
✓correct inequality (3)

✓– 3 (A)
✓7 (CA from 4.1.2)
✓correct inequality (3)

 

 4.3

RS: y = ½ x + 7   ∴S(–14 ; 0)
SP = √(-14 - (-4))2 + (0 - 5)2 = √100 + 25 =√125
Area DSMK = ½ . MK . SP
= ½(20)(√125)
= 25 square units

OR
math11
Let β = inclination of SM
RS: y = ½ x + 7      ∴ S(–14 ; 0)
SM = √(-14 - (-2))2 + (0 -1)2 = √145
tan β =  1 - 0      =  ∴ β = 4,76°
         - 2 - (-14)    12
∴  SMK = 116,57° – 4,76° [ext Ð of D]
= 111,81°
Area ΔSMK = ½(SM)(MK).sinSMK
= ½(√145)(√20).sin111,81°
= 24,9985 = 25 square units

OR
math12
RS: y = ½ x + 7    ∴ S(–14 ; 0)
SK =  √(-14 - 0)2 + (0 + 3)2 = √205

cosSMK = (√145)2 + (√20)2 - (√205)2 = - 2√29
                          2( 145)( 20)                      29
SMK = 111,80°
Area ΔSMK = ½(SM)(MK).sinSMK
=½(√145)(√20).sin111,81°
= 24,9985 = 25 square units

OR
Produce KS to T
RS: y = ½ x + 7    ∴S(–14 ; 0)
SK = √(-14 - 0)2 + (0 + 3)2 = √205
SM =  √(-14 - (-2))2 + (0 -1)2 = √145
mSK  = - 3 ⇒ TSˆO = 167,91°
             14
mSM = 1  ⇒MSO = 4,76°
          12
MSK = 180° - 167,91° + 4,76° = 16,85°
Area ΔSMK = ½(SM)(SK).sinMSˆK
= ½(√145)(√205).sin16,85°
= 24,9985 = 25 square units

✓coordinates of S
✓length of SP
✓correct base & height into Area rule
✓correct substitution
✓answer (5)

 

✓coordinates of S
✓length of SM
✓size of SMK
✓correct substitution into area rule
✓answer
(5)

 

✓coordinates of S
✓length of SK
✓size of  SMK
✓correct substitution into area rule
✓answer
(5)

 

✓coordinates of S
✓length of SK & SM
✓size of   MSK
✓correct substitution into area rule
✓answer

(5)



 


QUESTION 5
 

5.1

sin(A - 360°).cos(90° + A)
   cos(90° - A).tan(-A)

sinA(-sinA)
   sinA(-tanA)
math13

✓sin A
✓sin A
✓sin A
✓–tan A
✓tan A = sinA
              cosA
✓answer
(6)

5.2.1

t 2 = (√34) 2 - (3) 2
∴ t = – 5

✓substitution
✓answer
(2)

5.2.2

tan b = - 5
             3

✓correct ratio(1)

5.2.3

cos2b = 2 cos2 β - 1
math14

✓compound formula
✓substitution
✓simplification
✓answer
(4)

 

✓compound formula
✓substitution
✓simplification
✓answer
(4)

 

✓compound formula
✓substitution
✓simplification
✓answer
(4)

5.3.1

LHS = sin(A + B) – sin(A – B)
= sin A.cos B + cos A.sin B – (sin A. cos B – cos A. sin B)
= sin A.cos B + cos A.sin B – sin A. cos B + cos A. sin B
= 2cos A.sin B
= RHS

✓compound formula
✓compound formula
(2)

5.3.2

sin 77° - sin 43° = sin(60° + 17°) - sin(60° - 17°)
= 2cos 60°.sin 17°
= 2 x ½ sin17°
= sin17°
OR
sin 77° - sin 43° = sin(60° + 17°) - sin(60° - 17°)
= (sin 60° cos17° + cos 60° sin17°) -
(sin 60° cos17° - cos 60° sin17°)
= √3 cos17° + ½ sin17° -√ 3 cos17° + ½sin17°
    2                                   2                 
= sin17°

✓60° + 17°
✓60° – 17°
✓simplify
✓½
(4)

 

✓60° + 17°
✓60° – 17°
✓simplify
✓½ (4)

[19]


QUESTION 6

6.1 math15

✓(–90° ; –3)
✓(0 ; –1)
x – intercepts: –210° & 30°
✓shape
(4)

6.2

cos 2x = 2 sin x - 1
1 - 2 sin2x = 2 sin x - 1
2sin 2x + 2 sin x - 2 = 0
sin 2x + sin x - 1 = 0
math16

✓cos 2x = 1- 2 sin 2x
✓standard form
✓using quadratic formula
✓substitution into quadratic formula
(4)

6.3

sin x = - 1 + √5 = 0,618...
                2
Reference Ð = 38,17°
∴ x = 38,17° + k.360° or x = 141,83° + k.360° ; k∈ Z
\ x = 38,17°    or    - 218,17°
y = 0,24
Points of intersection
(38,17° ; 0,24) and (-218,17° ; 0,24)

✓38,17°
✓141,83°
✓–218,17°
✓0,24 (4)
[12]


QUESTION 7
7

7.1

ABˆ C = 90°

✓answer (1)

7.2

In D ABE:
AB = tan y
BE

AB = k tan y

In D ABC:

AB = sin x
AC

AC =  AB 
        sin x

k tan y
    sin x

✓correct ratio
✓value AB
✓correct ratio
✓AC as subject and substitution
(4)

7.3

ADˆ C = ACˆ D = 180° - 2x = 90° - x
                               2
  DC         AC    
sin2x     sin(90° - x)
         DC       =   AC  
2 sin x cos x    cos x
DC = AC(2sin x cos x)
                cos x
= k tan y - 2 sin x cos x
     sin x          cos x
= 2k tan y

OR

DC2 = AD2 + AC2 - 2AD.ACcos 2x
= AC2 + AC2 - 2AC2 cos 2x
= 2AC2 (1- cos 2x)
= 2AC2 (1- 1+ sin2x)
= 4AC2 sin2x
DC = 2AC.sin x
math20

✓90° - x
✓subst into sine rule
✓2 sin x cos x
✓ 
ü cos x
✓ 
substitution
(5)

✓substitution into cos rule
✓factorisation
✓1- 2 sin 2x
DC ito AC and sin x
substitution
(5)

✓correct cos rule
✓substitution
✓1- 2 sin 2x
✓squaring and multiplication
✓√4k 2 tan2y
(5)

[10]


QUESTION 8
8

8.1.1

E = 50°- 15° = 35°     [ext ∠ of D]
A = 35°                     [alt ∠s ; CE || AB]
OR
E = 180° - (130° + 15°) = 35°  [str line; ∠s of D]
Aˆ  = 35°                                [alt ∠se; CE || AB]

OR
B = 50°              [∠s in same segment]
C2 + 15° = 50°   [alt ∠s ; CE || AB]
∴ C2   = 35°
A  = 35°       [∠s in same segment]

✓S
✓S ✓R (3)

✓S ✓ R (3)
✓S

✓S

✓S ✓ R (3)

8.1.2

C2 = 35°   [Ðs in same segment]

✓S ✓R (2)

8.2

C2  = E      [from 8.1.1 and 8.1.2]
∴ CF is a tangent to the circle [converse tan chord theorem]

✓S
✓ R (2)
[7]


QUESTION 9
9

9.1.1

AF3x 3     &     AG12y3
BF    2x    2            CG     8y      2

∴ AFAG
   BF   CG

∴ FG || BC [conv prop th. OR line divides 2 sides of ∆ in prop]

✓ AFAG
   BF   CG

✓ R

(2)

9.1.2

AG = AH       [prop theorem; GH || CK OR
GC    HK
line || to 1 side of D]
AG = AE       [prop theorem; GE || CD]
GC    ED

∴ AHAE
   HK    ED

✓S ✓R

✓ S

(3)

9.2

AE = 3   and AH = 3 
ED    2          HK    2

AE3 and   153
12     2          HK   2

∴ AE = 18 and HK = 10               AD = 30
∴ HE = AE – AH                           KD = AD – AH – HK
= 18 – 15                                     = 30 – 15 – 10
= 3                     OR                     = 5

∴ EK = HK – HE                           EK = ED – KD
= 10 – 3                                      = 12 – 5
= 7                                              = 7

✓use of ratios
✓ AE = 18
✓ HK = 10
✓ HE = 3  or KD = 5
✓ EK = 7
(5)

[10]


QUESTION 10
10

10.1

Line from centre to midpoint of chord

✓ R (1)

10.2.1

OWT = OWS = 90°  [radius ^ tangent]
∴ MN || TS              [corresp s = OR co-int Ðs 180°
                               OR alternate ∠ s]

✓ R

✓ R (2)

10.2.2

M1  = N1                 [s opp = sides]
M1  = T            [corresp s; MN || TS]
∴ N1 = T
∴TMNS is a cyclic quadrilateral [conv: extÐ cyclic quad]

OR
M1  = N1                [s opp = sides]
N1  = S                [corresp s; MN || TS]
∴ S = M1
∴ TMNS is a cyclic quadrilateral [conv: extÐ cyclic quad]

✓ S
✓ S
✓ S
✓ R
(4)

✓ S
✓ S
✓ S
✓ R
(4) 

10.2.3

In ΔOVN and ΔOWS
O2 = O2                                        [common]
ΔOVN = ΔOWS = 90°                      [from 10.1]
ΔONV = ΔOSW                          [sum s Δ]
∴ΔOVN ||| DOWS                  [, , ]

∴ VNON
   WS    OS
But VN = ½ MN                     [given] 
½MNON
 WS     OS
∴ OS.MN = 2ON. WS

OR
In ΔOVM and ΔOWS
ΔOVM = ΔOWS = 90°                      [from 10.1]
ΔOMV = ΔOSW                          [sum s Δ]
∴ΔOVM ||| ΔOWS                  [∠,∠,]
∴ OMVM
   OS    WS
But VN = ½MN                     [given]
½MNOM
 WS     OS
∴ OS.MN = 2ON. WS          [VM = VN]

OR
If any other 2 Ds are used, first need to prove that TW = WS by proving ΔOWT ≡ ΔOWS
In ΔOVM and ΔOWT
O1 = O1                                            [common]
OVM = OWT = 90°                     [from 10.1]
OMV = OTW                              [sum s ]
∴ΔOVM ||| ΔOWT                [∠,∠,]
∴ VMOM
   WT    OT
But VN = VM = ½MN            [given]
and WT = WS  and OT = OS      [ΔOWT ≡ ΔOWS]
½MNON
 WS     OS
∴ OS.MN = 2ON. WS

S; S; S OR
S; S; R
✓ΔOVN ||| ΔOWS
VNON
  WS    OS
✓ VN = ½MN
✓ substitution
(5)

 

S; S; S OR
S; S; R
✓ΔOVM ||| ΔOWS
OM = VM
   WS    OS
✓ VN = ½MN
✓ substitution
(5)

 

similarity
congruency
VN = VM =½ MN
(5)

[12]


QUESTION 11
 
math17

11.1

Construction: Draw diameter NR and draw RM
ONM + MNQ = 90°           [ radius ^ tangent 
NMR =  90°                        [ in semi circle]
∴ MRN =180° - (90° + 90° - MNˆ Q)      [sum s Δ]
=  MNQ

but MRN = MKN  [Δs same segment]
∴ MNQ = K

OR

construction
S /R
S/ R
S
S / R
(5)

 

    math18              

11.1

Construction: Draw diameter NR and draw RK
MNQ + RNM = 90°  [radius ^ tangent]
NKR =  90°              [ in semicircle]
∴ MKN = 90° - RKM
= 90° –  RNM  [s same segment]
∴ MNQ = K

construction
S /R
S/ R
S
S / R
(5)

math19

                                                               

11.1

Construction: Draw radii ON and OM
MON = 2K   [ at centre = 2 at circumf]
ONM + OMN = 180° - 2Kˆ    [ s of D]
ONM = OMN = 180° - 2K  = 90° - Kˆ   [s opp = sides]
                               2
ONQ =  90°               [radius^tangent]
∴ MNQ = K

construction
S /R
S
S/ R
S / R
(5)

11.2
 11.2

11.2.1(a)

Angle in a semi circle

R (1)

11.2.1(b)

Exterior ∠ of quad = opp interior 
OR
Opp s of quad supplementary

R (1)

11.2.1(c)

tangent chord theorem

R (1)

11.2.2(a)

In ΔAEC
Eˆ  = 180° - (90° + x)        [sum s Δ]
= 90° x
D1  = 180° - (90° + x)      [s on a straight line]
= E = 90° - x
∴ AD = AE                    [sides opp = s]

S
S
R

(3)

11.2.2(b)

In ΔADB and ΔACD
A2  = A2                                                [common]
D2  = C                                         [proven]
B2= D2 + D3                              [sum ∠e Δ]
∴ΔADB ||| ΔACD

OR
In ΔADB and ΔACD
A2  = A2                       [common]
D2  = C                                 [proven]
∴ΔADB ||| ΔACD        [∠,∠,∠]

S
S
S
(3)

 

S
S
R
(3)

11.2.3(a)

AD = AB             [||| ∠s]
AC    AD

AD2 = AC . AB
= 3r × r
= 3r2

ratio
substitution
(2)

11.2.3(b)

AD = AE = √3r          [from 11.2.2(a) &11.2.3(a)]
AB = r and BC = 2r ∴AC = 3r
In ΔACE:
tan  Eˆ  =  AC
                 AE
=  3 = √3
   √3r
∴ E = 60°
∴ D1  = 60°                 [from 11.2.2(a)]
∴ Aˆ 1  = 60°                    [∠s of Δ = 180°]
∴ Δ ADE is equilateral

OR
AD = DB              [||| Δs]
AC    CD
√3r DB
 3r     CD
tan x =
           √3
∴ In ΔBDC: x = 30°
∴  E  = 60°
∴  D1  = 60°                 [from 11.2.2(a)]
∴ A1  = 60°                    [∠s of Δ = 180°]
∴ ΔADE is equilateral

OR
AD = DB              [||| Ds]
AC    CD
√3r DB     ∴ BD = CD
3r      CD                  √3
DC2 = BC2 - DB2
=4r2 - CD2
           3
3DC2 = 12r2 - CD2
4CD2 = 12r2
DC = √3r
EC2 = EA2 + AC2
= 3r2 + 9r2
EC = 2√3r
∴ ED = EC – DC
= √3r
∴ ED = EA = AD
∴ DADE is equilateral

AC ito r
trig ratio
simplification
all 3 ∠s = 60°
(4)

 

3r DB
    3r     CD
  1 = tan x
    √3
x = 30°
all 3 ∠s = 60°
(4)

 

BD = CD
            √3
DC = √3r
EC = 2√3r
ED = EA = AD

(4)

[20]

TOTAL:150

Last modified on Friday, 10 September 2021 09:48