MATHEMATICS PAPER 2 GRADE 12 NSC PAST PAPERS AND MEMOS FEBRUARY/MARCH 2018
NOTE:
If a candidate answers a question TWICE, only mark the FIRST attempt.
If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
Assuming answers/values in order to solve a problem is NOT acceptable.
GEOMETRY
S
A mark for a correct statement (A statement mark is independent of a reason.)
R
A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)
S/R
Award a mark if the statement AND reason are both correct.
MEMORANDUM
QUESTION 1
Days
1
2
3
4
5
6
7
8
9
10
Units of blood
45
59
65
73
79
82
91
99
101
106
1.1.1
x = 800 10 = 80 Answer only: full marks
✔ 800 (addition of units) ✔ answer (CA if ÷ 10) (2)
1.1.2
σ =18,83 No penalty for rounding
✔✔ answer (A) (2)
1.1.3
(61,17 ; 98,83) Days 1, 2, 8, 9 and 10 lie outside 1 standard deviation from the mean ∴5 days Correct answer only: full marks provided that 1.1.1. & 1.1.2 both correct
✔ mean – 1 SD ✔ mean + 1 SD ✔ answer (3)
1.2.1
Skewed to the left or negatively skewed
✔ answer (1)
1.2.2
A = 65 B = 99 Answers without labelling: 1/2
✔ answer ✔ answer (2)
1.3
New total = 95 × 10 = 950 ∴Units not counted = 950 – 800 = 150
✔ answer (CA from 1.1.1) (1)
[11]
QUESTION 2
2.1
Outlier (100 ; 100) accept: 100 as answer
✔ answer (1)
2.2
a = 94,50273… b = 2,913729… yˆ= 94,50 + 2,91x
Integral values: max 2/3
Swopped a and b: 2/3
✔ value of a ✔ value of b ✔ equation (3)
2.3
yˆ= 2,91(240) + 94,50 (CA from 2.1) = 792,90 Value = R793 000
OR
yˆ=793,7978142 (calculator) Value = R794 000
Penalise 1 mark if answer not in thousands of Rands
✔ substitution ✔ answer in thousands of Rands (2)
✔✔ answer in thousands of Rands (2)
2.4
b = 2,913729… ∴ R2 914 OR/OF R2 910 (calculator)
Answer only: full marks
✔ value of b ✔ answer (2)
[8]
QUESTION 3
3.1
x = 3
✔ answer (1)
3.2
mQP = tan71,57° = 3
Answer only: full marks
✔ mQP= tan71,57° ✔ answer (2)
3.3
y = mx+c y − y1 = m (x − x1) − 2 = 3(−7) + c or y + 2 = 3(x + 7) y = 3x +19
(m CA from 3.2 if > 0) ✔ substitution of m & Q ✔ equation (2)
3.4
(wrong R: CA if x > 0) ✔ substitution ✔ answer (in surd form) (2)
3.5
tan(90° − θ) = mQR = 0 - (-2) 3 - (-7) = 1/5
Answer only: full
tanθ = 1/5 ; 1/3
(wrong R: CA if x > 0) ✔ gradient of QR/RN/QN ✔ substitution of Q & R ✔ answer (3)
3.6
OR
✔ RN ✔ SR ✔ diagram (5 & √26) ✔ use of correct area rule ✔ substitution of sinθ ✔ answer (6)
✔ RN ✔ SR ✔ diagram ✔ use of correct area rule ✔ substitution of sinθ ✔ answer (6)
✔ SR ✔✔ ⊥ height ✔ use of correct area formula ✔ substitution of sinθ ✔ answer (6)
x2 + 32x + (16)2 + y2 + 16y + (8)2 = 256 +64 - 240 (x + 16)2 + (y + 8)2 = 80 New circle: Centre(−16 ;−8)& r = 4√5 Original circle: M(−16 ; −8)& r = 2√5 This circle will never cut the circle with centre M as they have the same centre (concentric circles) but unequal radii
✔ equation in centre, radius form ✔ Centre:(−16;−8) ✔ r = 4 5(new) ✔ r = 2 5(original) ✔ conclusion (“concentric” must be stated) (5) [24]
QUESTION 5
5.1.1
[ no calculator in 5.1]
cos2θ = - 5/6, where 2θ ∈[180°;270°]
y2 = 62 − (−5)2 [Pythagoras] y = ±√11 (5 ; y) is in 3rd quadrant: ∴y = −√11 sin 2θ = − √11/6
✔ diagram (3rd quadrant only) ✔ using Pythagoras ✔ y – value ✔ answer (4)
✔sin22θ = 1 - cos22θ ✔ substitution ✔ value of sin22θ ✔ answer (4)
5.1.2
cos2θ =1− 2sin2θ 2sin2θ = 1 - cos 2θ
✔cos2θ =1− 2sin2θ ✔ substitution ✔ answer (3)
5.2
sin(180° − x).cos(−x) + cos(90° + x).cos(x −180°) = sin x.cos x − sin x(−cos x) = 2sin x.cos x = sin 2x
Second line written as: sinx cos x + sinx cos x: max 5/6
✔sin x ✔cos x ✔ − sin x ✔− cos x ✔ simplification ✔ answer (6)
5.3
sin3x.cos y + cos3x.sin y sin(3x + y) = sin 270° = –1
✔ compound angle ✔ answer (2)
5.4.1
2cos x = 3tan x 2cos x = 3sin x cos x 2cos2x = 3sin x 2(1 - sin2x) = 3sin x 2 - 2sin2x = 3sin x 2sin2x = 3sinx - 2 = 0
✔ tan x = sin x cos x ✔ multiplying by cosθ ✔cos2x =1− sin2x (3)
5.4.2
2sin2x + 3sin x - 2 = 0 (2sin x −1)(sin x + 2) = 0 sin x = 1/2 or sin x = −2 (no solution) x = 30° + k.360° or x =150° + k.360° ; k ∈Z
✔ factors ✔ both values of sin x ✔ no solution ✔30°+ k.360° ✔150°+ k.360° ; k ∈Z (5)
5.4.3
5y = 30º + k.360º or 5y = 150º + k.360º y = 6°+ k.72° or y = 30°+ k.72° ∴ y = 144° + 6° or y = 144° + 30° y = 150° or y = 174°
OR
144° ≤ y ≤ 216° 720° ≤ 5y ≤ 1080° 5y = 750° or 5y = 870° y = 150° or y = 174°
✔y = 6°+ k.72° ✔y = 30°+ k.72° ✔ 150° ✔ 174° (4)
✔ 5y = 750° ✔ 5y = 870° ✔ 150° ✔ 174° (4)
5.5.1
g(x) = −4cos(x + 30°) maximum value = 4
✔ answer (1)
5.5.2
range of g(x): − 4 ≤ y ≤ 4 OR y ∈[−4 ; 4] ∴range of g(x) + 1: − 3 ≤ y ≤ 5 OR y ∈[−3 ; 5] Answer only: full marks
✔ range of g(x) ✔ answer (2)
5.5.3
y = −4cos(x + 30°) shifted to the left: y = -4cos( x + 30º + 60º ) = -4cos(x + 90º) = 4sinx ∴h(x) = −4sin x Answer only: full marks
✔ shift of 60° to the left ✔ reduction ✔ equation of h (3) [33]
QUESTION 6
6.1.1
tan θ = PQ = PQ QR x ∴PQ = xtanθ Answer only: full marks
OR = PQ sinP sinPRQ ∴PQ = x. sinθ sin(90º - θ )
✔ trig ratio ✔ answer (2)
✔ trig ratio ✔ answer (2)
6.1.2
AR = QR sinAQR sinQAR AR = xsin(90º + θ) sinθ Answer only: full marks
✔ use of sine rule ✔ substitution into sine rule correctly (2)
6.2
sin2θ = AB AR AB = ARsin2θ = xsin(90º + θ ).sin2θ sinθ = xcosθ .sin2θ sinθ = xcosθ .2sinθ cosθ sinθ = 2x cos2θ
✔ substitution into trig ratio and AB as subject ✔ substitution of AR ✔ co-ratio ✔sin 2θ = 2sinθ cosθ (4)
6.3
AB = 2cos212º QP xtan12º = 9
✔ substitution CA from 6.1.1) ✔ answer (2) [10]
QUESTION 7
7.1.1
T1 = 70° [ext ∠ of cyclic quad] T 70
✔ S ✔ R (2)
7.1.2
Q1 = Q2 = 35º [equal chords;equal∠s/]
✔ S ✔ R (2)
7.2.1
T2 =Q1 = 35º [alt ∠s ; PQ || TR]
✔ S ✔ R (2)
7.2.2
PT= QR [prop theorem ; PQ || TR] TS RS ∴ TR = QR [PT = TR] TS RS
✔ S ✔ R (2)
[8]
QUESTION 8
8
PTR = 90° [∠ in semi-circlel] x = 90º + P [ext ∠ of Δ] ∴ R = x − 90° STP = x − 90° [tan chord theorem] x + x − 90° + y =180° [sum of ∠s in ∆] ∴ y = 270° – 2x
✔ S/R ✔ S/R ✔ S ✔R ✔ S ✔ answer [6]
QUESTION 9
9.1
equiangular ∆s OR (∠∠∠)
✔ answer (1)
9.2
∴ GE = DE [||| Δs] GF GE GE2 = 45 × 80 GE = 60
✔ proportion ✔ substitution ✔ answer (3)
9.3
In ΔDEH and ΔFGH: DHE = FHG [vert opp ∠s =] DEH = FGH [||| Δs] EDH = GFH [sum of ∠s in ∆] ∴ΔDEH ||| ΔFGH
OR
In ΔDEH and ΔFGH: DHE = FHG [vert opp ∠s =] DEH = FGH [||| Δs] ∴ΔDEH ||| ΔFGH [∠∠∠]
Construction: AO is drawn and produced to M O1 = A1 + B [ext ∠ of Δ] But A1 = B [∠s opp = radii] ∴ O1 = 2A1 Similarly : O2 = 2 A2 ∴ O1 + O2 = 2A1 + 2A2 = 2 (A1 + A2) BOC = 2BAC
✔ Constr
✔ S/R
✔ S/R
✔ S
✔ S (5)
10.2
10.2.1(a)
F1 = 2x [∠ centre = 2∠ at circum ]
✔ S ✔ R (2)
10.2.1(b)
C = x [∠s in the same seg]
OR
C = x [∠ centre = 2∠ at circum]
✔ S ✔ R (2)
✔ S ✔ R (2)
10.2.2
D3 = x [∠s opp equal sides] E3 = 2x [ext ∠ of Δ] ∴ F1 = E3 = 2x ∴ AFED is a cyclic quadrilateral [converse ∠s in the same seg]
✔ S/R ✔ S/R ✔ S ✔ R (4)
10.2.3
A2 + A3 + D1 + F1= 180° [sum of ∠s in ∆] A2 + A3 = D1 [∠s opp = sides] ∴ A2 + A3 = 90° − x E1 = A2 + A3 [ext∠of cyclic quad] = 90° − x FKE = 90° [line from centre bisects chord] F3 = x [sum of ∠s in ∆]
✔ S ✔ S ✔ R ✔ S ✔ S ✔ R (6)
10.2.4
BAC = D3 [∠s in the same seg] AE = BE [sides opp equal ∠s] area ΔAEB = 1/2(BE)(AE).sinAEB area ΔDEC 1/2(EC)(ED).sinDEC 6,25 = AE2 ED2 ∴ AE= 2,5 ED
✔ S ✔ S ✔ substitution into area rule ✔ simplification of RHS ✔ answer (5)